Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis
نویسندگان
چکیده
Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates (ITC), as a defense against bacteria, fungi, insects and herbivores including man. Low levels of ITC trigger a host defense system in mammals that protects them against chronic diseases. Because humans typically cook their brassica vegetables, destroying myrosinase, there is a great interest in determining how human microbiota can hydrolyze glucosinolates and release them, to provide the health benefits of ITC. ITC are highly reactive electrophiles, binding reversibly to thiols, but accumulating and causing damage when free thiols are not available. We found that addition of excess thiols released protein-thiol-bound ITC, but that the microbiome supports only poor hydrolysis unless exposed to dietary glucosinolates for a period of days. These findings explain why 3-5 servings a week of brassica vegetables may provide health effects, even if they are cooked.
منابع مشابه
Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition
Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study th...
متن کاملThe gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis.
Glucosinolates are sulfur-rich plant secondary metabolites whose breakdown products have a wide range of biological activities in plant-herbivore and plant-pathogen interactions and anticarcinogenic properties. In Arabidopsis thaliana, hydrolysis by the enzyme, myrosinase, produces bioactive nitriles, epithionitriles, or isothiocyanates depending upon the plant's genotype and the glucosinolate'...
متن کاملInfluence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats.
The breakdown of glucosinolates, a group of thioglucoside compounds found in cruciferous plants, is catalysed by dietary or microbial myrosinase. This hydrolysis releases a range of breakdown products among which are the isothiocyanates, which have been implicated in the cancer-protective effects of cruciferous vegetables. The respective involvement of plant myrosinase and gut bacterial myrosin...
متن کاملInfluence of pH and type of myrosinase complex on the products obtained in the myrosinase catalysed hydrolysis of glucosinolates – a MECC study
Environmental conditions, e.g. pH and the presence of Fe are well known factors that influence the product profile of the myrosinase catalysed hydrolysis of glucosinolates. Depending on the plant genera, the species and tissue of origin myrosinase isoenzymes (thioglucohydrolase EC 3.2.1.147) have different characteristics in terms of MW, subunit composition and pI. However, the influence of the...
متن کاملNSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0
One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates ha...
متن کامل